Interaction with the inositol 1,4,5-trisphosphate receptor promotes Ca2+ sequestration in permeabilised insulin-secreting cells.
نویسندگان
چکیده
Electropermeabilised insulin-secreting RINm5F cells sequestered Ca2+, resulting in a steady-state level of the ambient free Ca2+ concentration corresponding to 723 +/- 127 nM (mean +/- SEM, n = 10), as monitored by a Ca(2+)-selective minielectrode. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) promoted a rapid and pronounced release of Ca2+. This Ca2+ was resequestered and a new steady-state Ca2+ level was attained, which was always lower (460 +/- 102 nM, n = 10, P less than 0.001) than the steady-state Ca2+ level maintained before the addition of Ins(1,4,5)P3. Whereas the initial reuptake of Ca2+ subsequent to Ins(1,4,5)P3 stimulation was relatively slow, the later part of reuptake was fast as compared to the reuptake phases of a pulse addition of extraneous Ca2+. In the latter case the uptake of Ca2+ resulted in a steady-state level similar to that found in the absence of Ins(1,4,5)P3. Addition of Ins(1,4,5)P3 under this condition resulted in a further Ca2+ uptake and thus a lower steady-state Ca2+ level. Heparin, which binds to the Ins(1,4,5)P3 receptor, also lowered the steady-state free Ca2+ concentration. In contrast to Ins(1,4,5)P3, inositol 1,3,4,5-tetrakisphosphate was without effect on Ca2+ sequestration. These findings are consistent with the presence of a high-affinity Ins(1,4,5)P3 receptor promoting continuous release of Ca2+ under basal conditions and/or the Ins(1,4,5)P3 receptor being actively involved in Ca2+ sequestration.
منابع مشابه
Glucose stimulates voltage- and calcium-dependent inositol trisphosphate production and intracellular calcium mobilization in insulin-secreting beta TC3 cells.
The cellular processes leading to a rise in the intracellular free Ca2+ concentration ([Ca2+]i) after glucose stimulation and K+ depolarization were investigated in insulin-secreting beta TC-3 cells. Stimulation with 11.2mM glucose causes inositol 1,4,5-trisphosphate production and release of Ca2+ from intracellular stores. A strong correlation was observed between the changes in Ins(1,4,5)P3 c...
متن کاملCa(2+)-induced Ca2+ release in insulin-secreting cells.
The sulphydryl reagent thimerosal (50 microM) released Ca2+ from a non-mitochondrial intracellular Ca2+ pool in a dose-dependent manner in permeabilized insulin-secreting RINm5F cells. This release was reversed after addition of the reducing agent dithiothreitol. Ca2+ was released from an Ins(1,4,5)P3-insensitive pool, since release was observed even after depletion of the Ins(1,4,5)P3-sensitiv...
متن کاملOscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells.
Phospholipase C (PLC) is a ubiquitous enzyme involved in the regulation of a variety of cellular processes. Its dependence on Ca2+ is well recognized, but it is not known how PLC activity is affected by physiological variations of the cytoplasmic Ca2+ concentration ([Ca2+](i)). Here, we applied evanescent wave microscopy to monitor PLC activity in parallel with [Ca2+](i) in individual insulin-s...
متن کاملSecond messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells.
The second messenger function of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) was investigated in carbamylcholine-stimulated RINm5F cells by analysis of the early changes in inositol phosphates, cytosolic free Ca2+ concentration ([Ca2+]i), and insulin secretion. After a lag of 2 s, [Ca2+]i rose to a peak at 13 +/- 2 s, a response which was due mainly to mobilization from intracellular stores sin...
متن کاملInsulin potentiates Ca2+ signaling and phosphatidylinositol 4,5-bisphosphate hydrolysis induced by Gq protein-coupled receptor agonists through an mTOR-dependent pathway.
Multiple lines of evidence support the existence of crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling systems. However, the precise molecular mechanism(s) mediating this interaction is poorly understood. The results presented in this study show that exposure of ductal pancreatic adenocarcinoma BxPc-3, HPAF-II, and PANC-1 cells to insulin for as little as 1 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEBS letters
دوره 288 1-2 شماره
صفحات -
تاریخ انتشار 1991